期刊介绍
期刊导读
- 02/19我们在家中储存药物时常常出现的8大错误 这将影
- 02/16斗破苍穹:药老是甩手掌柜,风尊者操碎心,星陨
- 02/15它是水果还是“药”,比梨去火,天然止咳“剂
- 02/11青海去年累计查处违法违规定点医药机构1810家
- 02/11抗癌最好的药是什么?免疫力!如何提高肿瘤病
辐射交联医用水凝胶的国内研究进展(5)
4 展望
水凝胶是一类生物相容性优异的材料,具有保水性和可调节的生物化学特性。过去几十年里,我国学者致力于辐射技术制备水凝胶研发和设计,拓展了水凝胶在医用领域的应用,相关文献、专利成果颇多,包括未明确用途的水凝胶、伤口敷料、组织工程支架、角膜接触镜等。辐射技术使得水凝胶制备更为高效、清洁、便利,如凝胶强度、凝胶率可由辐射参数调节,不残留灭菌剂、交联剂。辐射技术允许水凝胶以不同类型、形式、用途方向进行设计,为水凝胶材料提供了创新的机会,如粉状的止血材料、膜片状的止血生物纱或敷料、无定形态的清创胶等大量研究成果已具备良好的产业化前景。
然而,更深层的难点和挑战依然存在。辐射交联水凝胶在伤口敷料的市场上已崭露头角,进入临床应用。但综合来看,商业产品的转化率仍有很大的提升空间,在角膜接触镜、组织工程支架等方面的商业产品有限,其潜力尚未充分开发。从我国国家药品监督管理局对医疗器械产品上市前的注册审评要求出发,需要验证辐射交联水凝胶产品的技术原理、工艺参数满足医疗器械的相关法规和要求,以保证转化产品的安全性、有效性和稳定性,而目前国内相关的研究较为匮乏,制约了新产品的上市和推广进度。
近年来,水凝胶在组织工程领域的创新性研究很多,国内外利用3D打印、自组装等技术手段制备的伤口敷料、组织工程支架等报道较多,辐射技术应该与这些技术融合,利用辐射技术制备生物医用材料的独特优势,在水凝胶的配方和制备工艺上进行创新,创造出对再生医疗技术进步有突出贡献的新型组织工程材料。最终,结合辐射交联水凝胶在产业化方面的技术积累,持续开发出引领行业进步的新产品。
1 Wang M X, Chen Y M, Gao Y, et al. Rapid selfrecoverable hydrogels with high toughness and excellent conductivity[J]. ACS Applied Materials & Interfaces,2018, 10(31): -. DOI: 10.1021/acsami. 8b0 6567.
2 Zhang Y S, Khademhosseini in engineering hydrogels[J]. Science, 2017, 356(6337): eaaf3627. DOI:10.1126/
3 Sun J Y, Zhao X, Illeperuma W R K, et al. Highly stretchable and tough hydrogels[J]. Nature, 2012, 489(7414)::10.1038/nature.
4 Jiang G Q, Liu C, Liu X L, et al. Construction and properties of hydrophobic association hydrogels with high mechanical strength and reforming capability[J].Macromolecular Materials and Engineering, 2009, 294(12)::10.1002/mame..
5 Chen G Q, Huang J R, Gu J F, et al. Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor[J]. Journal of Materials Chemistry A, 2020, 8(14): :10.1039/d0ta00002g.
6 Carpi A. Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications[M]. Rijeka, Croatia: InTech Open Access Publisher,2011.DOI:10.5772/771.
7 张向梅.辐射交联胶原水凝胶对成纤维细胞的生物学效应[D].北京:北京大学, Xiangmei. Biological effects of radiation crosslinked collagen hydrogel on fibroblasts[D]. Beijing:Peking University,2013.
8 Zhao L, Mitomo H, Zhai M L, et al. Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation[J]. Carbohydrate Polymers,2003, 53(4): 439-446. DOI: 10.1016/S0144-8617(03)00103-6.
9 Fan L H, Yang H, Yang J, et al. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings[J]. Carbohydrate Polymers, 2016, 146(12)::10.1016/
10 Zhai M L, Yoshii F, Kume T, et al. Syntheses of PVA/starch grafted hydrogels by irradiation[J]. Carbohydrate Polymers, 2002, 50(3): 295-303. DOI: 10.1016/S0144-8617(02)00031-0.
11 Rosiak J M, Ulański P, Pajewski L A, et al. Radiation formation of hydrogels for biomedical purposes. Some remarks and comments[J]. Radiation Physics and Chemistry, 1995, 46(2): 161-168. DOI: 10.1016/0969-806X(95)00007-K.
12 Wang Q G, Zhou X, Zeng J X, et al. Water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 368(3): 90-95. DOI:10.1016/
13 Jiang X, Wang C Y, Han Q. Molecular dynamic simulation on the state of water in poly(vinyl alcohol)hydrogel[J]. Computational and Theoretical Chemistry,2017, 1102(4): 15-21. DOI: 10.1016/
14 Wang Q G, Wang F L, Cheng K. Effect of crosslink density on some properties of electron beam-irradiated styrene-butadiene rubber[J]. Radiation Physics and Chemistry, 2009, 78(11): 1001-1005. DOI: 10.1016/
15 Shi Y, Xiong D S, Li J L, et al. In situ reduction of graphene oxide nanosheets in poly(vinyl alcohol)hydrogel by γ -ray irradiation and its influence on mechanical and tribological properties[J]. Journal of Physical Chemistry C, 2016, 120(34): -.DOI:10.1021/
文章来源:《医药界》 网址: http://www.yyjzz.cn/qikandaodu/2021/0213/561.html
上一篇:产品致胜见证“健康力量”一宜医药亮相2020郑
下一篇:茶多酚保健及药理功能的应用